Arabidopsis PSEUDO-RESPONSE REGULATOR7 is a signaling intermediate in phytochrome-regulated seedling deetiolation and phasing of the circadian clock.

نویسندگان

  • Karen A Kaczorowski
  • Peter H Quail
چکیده

To identify new components in the phytochrome (phy) signaling network in Arabidopsis, we used a sensitized genetic screen for deetiolation-defective seedlings. Two allelic mutants were isolated that exhibited reduced sensitivity to both continuous red and far-red light, suggesting involvement in both phyA and phyB signaling. The molecular lesions responsible for the phenotype were shown to be mutations in the Arabidopsis PSEUDO-RESPONSE REGULATOR7 (PRR7) gene. PRR7 is a member of a small gene family in Arabidopsis previously suggested to be involved in circadian rhythms. A PRR7-beta-glucuronidase fusion protein localized to the nucleus, implying a possible function in the regulation of photoresponsive gene expression. Consistent with this suggestion, prr7 seedlings were partially defective in the regulation of the rapidly light-induced genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), observable as a premature increase in expression level during the second peak of the biphasic induction profile that is elicited upon initial exposure of dark-grown seedlings to light. A similar 3- to 6-h coordinated advance in peak free-running expression of CCA1, LHY, and TIMING-OF-CAB1, which are considered to encode the molecular components of the circadian oscillator in Arabidopsis, was observed in entrained fully green prr7 seedlings compared with wild-type seedlings. Collectively, these data suggest that PRR7 functions as a signaling intermediate in the phytochrome-regulated gene expression responsible for both seedling deetiolation and phasing of the circadian clock in response to light.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat shock-induced fluctuations in clock and light signaling enhance phytochrome B-mediated Arabidopsis deetiolation.

Moderately warm constant ambient temperatures tend to oppose light signals in the control of plant architecture. By contrast, here we show that brief heat shocks enhance the inhibition of hypocotyl growth induced by light perceived by phytochrome B in deetiolating Arabidopsis thaliana seedlings. In darkness, daily heat shocks transiently increased the expression of pseudo-response regulator7 (P...

متن کامل

EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation.

To define the functions of genes previously identified by expression profiling as being rapidly light induced under phytochrome (phy) control, we are investigating the seedling de-etiolation phenotypes of mutants carrying T-DNA insertional disruptions at these loci. Mutants at one such locus displayed reduced responsiveness to continuous red, but not continuous far-red light, suggesting a role ...

متن کامل

Functional profiling reveals that only a small number of phytochrome-regulated early-response genes in Arabidopsis are necessary for optimal deetiolation.

In previous time-resolved microarray-based expression profiling, we identified 32 genes encoding putative transcription factors, signaling components, and unknown proteins that are rapidly and robustly induced by phytochrome (phy)-mediated light signals. Postulating that they are the most likely to be direct targets of phy signaling and to function in the primary phy regulatory circuitry, we ex...

متن کامل

Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock.

Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent ...

متن کامل

Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways.

Arabidopsis (Arabidopsis thaliana) seedlings undergo photomorphogenesis in the light and etiolation in the dark. Light-activated photoreceptors transduce the light signals through a series of photomorphogenesis promoting or repressing factors to modulate many developmental processes in plants, such as photomorphogenesis and shade avoidance. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a conserved R...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 15 11  شماره 

صفحات  -

تاریخ انتشار 2003